CSP dichotomy for special triads

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Csp Dichotomy for Special Triads

For a fixed digraph G, the Constraint Satisfaction Problem with the template G, or CSP(G) for short, is the problem of deciding whether a given input digraph H admits a homomorphism to G. The dichotomy conjecture of Feder and Vardi states that CSP(G), for any choice of G, is solvable in polynomial time or NP-complete. This paper confirms the conjecture for a class of oriented trees called speci...

متن کامل

Csp Dichotomy for Special Polyads

For a digraph H, the Constraint Satisfaction Problem with template H, or CSP(H), is the problem of deciding whether a given input digraph G admits a homomorphism to H. The CSP dichotomy conjecture of Feder and Vardi states that for any digraph H, CSP(H) is either in P or NP-complete. Barto, Kozik, Maróti and Niven (Proc. Amer. Math. Soc, 2009) confirmed the conjecture for a class of oriented tr...

متن کامل

The #CSP Dichotomy is Decidable

Bulatov (2008) and Dyer and Richerby (2010) have established the following dichotomy for the counting constraint satisfaction problem (#CSP): for any constraint language Γ, the problem of computing the number of satisfying assignments to constraints drawn from Γ is either in FP or is #P-complete, depending on the structure of Γ. The principal question left open by this research was whether the ...

متن کامل

The Proof of CSP Dichotomy Conjecture

Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NP-complete in general, but certain restrictions on the form of the constraints can ensure tractability. The standard way to parameterize interesting subclasses of the constraint satisfaction problem is via finite constraint languages. The main problem is to classify t...

متن کامل

A Dichotomy for 2-Constraint Forbidden CSP Patterns

Although the CSP (constraint satisfaction problem) is NP-complete, even in the case when all constraints are binary, certain classes of instances are tractable. We study classes of instances defined by excluding subproblems. This approach has recently led to the discovery of novel tractable classes. The complete characterisation of all tractable classes defined by forbidding patterns (where a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2009

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-09-09883-9